团 体 标 准

T/SSEA 00**—2019

煤矿机械用高强度耐磨钢板

High strength abrasion resistant steel plate for coal mining industry

(征求意见稿)

**** - **- **发布

****-**-**实施

目 次

j言I	Ι
范围	1
规范性引用文件	1
订货内容	2
牌号表示方法	
尺寸、外形、重量及允许偏差	
技术要求	
试验方法	
检验规则	
包装、标志、质量证明书	

前 言

本团体标准按照 GB/T 1.1-2009 给出的规则起草。

本标准由中国特钢企业协会团体标准化工作委员会提出并归口。

本标准主要起草单位:

本标准主要起草人:

煤矿机械用高强度耐磨钢板

1 范围

本标准规定了煤矿机械用高强度耐磨钢板的订货内容、牌号表示方法、尺寸、外形、重量及允许偏差、技术要求、试验方法、检验规则、包装、标志及质量证明书等。

本标准适用于煤炭、矿山等行业在开采、运输、加工等过程中使用的耐磨损机械部件用厚度范围 4mm~160mm的高强度耐磨钢板。

2 规范性引用文件

下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。 凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

- GB/T 222 钢的成品化学成分允许偏差
- GB/T 223.3 钢铁及合金化学分析方法二安替比林甲烷磷钳酸重量法测定磷量
- GB/T 223.9 钢铁及合金化学分析方法铝含量的测定铬天青S分光光度法
- GB/T 223.11 钢铁及合金化学分析方法过硫酸铵氧化容量法测定铬量
- GB/T 223.12 钢铁及合金化学分析方法碳酸钠分离-二苯碳酰二肼光度法测定铬量
- GB/T 223.13 钢铁及合金化学分析方法硫酸亚铁铵容量法测定钒含量
- GB/T 223.14 钢铁及合金化学分析方法钽试剂萃取光度法测定钒量
- GB/T 223.17 钢铁及合金化学分析方法二安替比林甲烷光度法测定钛量
- GB/T 223.19 钢铁及合金化学分析方法新亚铜灵-三氯甲烷萃取光度法测定铜量
- GB/T 223.23 钢铁及合金化学分析方法丁二酮肟分光光度法测定镍量
- GB/T 223.24 钢铁及合金化学分析方法萃取分离-丁二酮肟分光光度法测定镍量
- GB/T 223.26 钢铁及合金化学分析方法硫氰酸盐直接光度法测定钼量
- GB/T 223.27 钢铁及合金化学分析方法硫氰酸盐-乙酸丁酯萃取分光光度法测定钼量
- GB/T 223.54 钢铁及合金化学分析方法火焰原子吸收分光光度法测定镍量
- GB/T 223.58 钢铁及合金化学分析方法亚砷酸钠-亚硝酸钠滴定法测定锰量
- GB/T 223.59 钢铁及合金化学分析方法锑磷钼蓝光度法测定磷量
- GB/T 223.60 钢铁及合金化学分析方法高氯酸脱水重量法测定硅含量
- GB/T 223.61 钢铁及合金化学分析方法磷钼酸铵容量法测定磷量
- GB/T 223.62 钢铁及合金化学分析方法乙酸丁酯萃取光度法测定磷量
- GB/T 223.63 钢铁及合金化学分析方法高碘酸钠(钾)光度法测定锰量
- GB/T 223.64 钢铁及合金化学分析方法火焰原子吸收光谱法测定锰量
- GB/T 223.67 钢铁及合金化学分析方法还原蒸馏-次甲基蓝光度法测定硫含量
- GB/T 223.68 钢铁及合金化学分析方法管式炉内燃烧后碘酸钾滴定法测定硫含量
- GB/T 223.69 钢铁及合金化学分析方法管式炉内燃烧后气体容量法测定碳含量
- GB/T 223.71 钢铁及合金化学分析方法管式炉内燃烧后重量法测定碳含量
- GB/T 223.72 钢铁及合金化学分析方法氧化铝色层分离-硫酸钡重量法测定硫量
- GB/T 223.74 钢铁及合金化学分析方法非化合碳含量的测定

- GB/T 223.75 钢铁及合金化学分析方法甲醇蒸馏-姜黄素光度法测定硼量
- GB/T 223.76 钢铁及合金化学分析方法火焰原子吸收光谱法测定钒量
- GB/T 223.78 钢铁及合金化学分析方法姜黄素直接光度法测定硼量
- GB/T 228.1 金属材料拉伸试验第1部分: 室温试验方法
- GB/T 229 金属材料夏比摆锤冲击试验方法
- GB/T 231.1 金属材料布氏硬度试验 第1部分: 试验方法
- GB/T 247 钢板和钢带包装、标志及质量证明书的一般规定
- GB/T 709-2019 热轧钢板和钢带的尺寸、外形、重量及允许偏差
- GB/T 2970 厚钢板超声波检验方法
- GB/T 2975 钢及钢产品力学性能试验取样位置及试样制备
- GB/T 4336 碳素钢和中低合金钢火花源原子发射光谱分析方法(常规法)
- GB/T 8170 数值修约规则与极限数值的表示和判定
- GB/T 14977 热轧钢板表面质量的一般要求
- GB/T 17505 钢及钢产品交货的一般继续要求
- GB/T 20066 钢和铁化学成分测定用试样的取样和制样方法
- GB/T 20123 钢铁总碳硫含量的测定高频感应炉燃烧后红外吸收法(常规方法)
- GB/T 20125 低合金钢多元素含量的测定电感耦合等离子体原子发射光谱法
- GB/T 20126 非合金钢低碳含量的测定第2部分: 感应炉(经预加热)内燃烧后红外吸收法

3 订货内容

按本标准订货的合同或订单应包括下列内容:

- a) 标准编号:
- b) 产品名称;
- c) 牌号;
- d) 规格尺寸;
- e) 交货状态;
- f) 重量:
- g) 其他特殊要求。

4 牌号表示方法

钢的牌号用"耐磨"的汉语拼音首字母"NM"、规定表面布氏硬度数值及"矿用"首字母"K"表示。例如: NM450K。

5 尺寸、外形、重量及允许偏差

- 5.1 钢板的厚度允许偏差应符合 GB/T 709 的要求。
- 5.2 根据需方要求,经供需双方协议,可供应其他尺寸、外形及允许偏差的钢板。
- 5.3 钢板按理论重量交货, 计算用钢板密度为 7.85g/cm3。

6 技术要求

6.1 牌号与化学成分

6.1.1 钢的牌号和化学成分(熔炼分析)应符合表1的规定。

	化	学成分(质量	量分数)	/%		
Cr	Р	S	Ni	Mo	Τi	ľ

	化学成分(质量分数)/%										
牌号	С	Si	Mn	Cr	Р	S	Ni	Мо	Ti	Alt	В
	< <	\forall	\forall	\forall	\forall	€	€	€	< <	≽	D
NM360K	0. 20	0.70	1. 55	1.00	0.018	0.0050	0.50	0. 50	0.050		
NM400K	0. 22	0.70	1.55	1.00	0.018	0.0040	0.80	0.80	0.050		0.0005
NM450K	0. 25	0.70	1. 55	1. 20	0.015	0.0040	0.80	0.80	0.050	0. 020	0.0005~ 0.0060
NM500K	0.35	0.70	1. 50	1.30	0. 015	0.0030	1.00	1. 00	0.050		0.0000
NM550K	0.38	0.70	1.60	1.30	0. 015	0.0030	1.50	1.00	0.050		

表 1 牌号及化学成分

- 6.1.2 在保证钢板性能的前提下,表1中规定的Cr、Ni、Mo合金元素可任意组合加入,也可添加表1 规定以外的其他微合金元素,具体含量应在质量证明书中注明。
- 6.1.3 钢中Cu为残余元素时,其含量应不大于0.30%; As含量应不大于0.08%。如供方能保证,可不 做分析。
- 6.1.4 根据用户要求,由供需双方协议,可规定各牌号碳当量,碳当量按公式(1)计算。

 $CEV(\%) = C + Mn/6 + (Cr + Mo + V) /5 + (Cu + Ni) /15 + \dots (1)$

6.1.5 成品钢板的化学成分允许偏差应符合 GB/T 222 的规定。

6.2 冶炼方法

钢由氧气转炉或电炉冶炼, 并采用炉外精炼工艺。

6.3 交货状态

钢板以淬火、淬火+回火、TMCP或 TMCP+回火状态交货。

6.4 力学和工艺性能

- 6.4.1 钢板的力学和工艺性能应符合表 2 的规定。
- 6.4.2 对厚度小于 12mm 钢板的夏比(V型缺口)冲击试验应采用辅助试样, >8mm~<12mm 钢板辅助 试样尺寸为 10mm×7.5mm×55mm, 其试验结果应不小于表 2 规定值的 75%; 6mm~8mm 钢板辅助试样尺寸 为 10mm×5mm×55mm, 其试验结果应不小于表 2 规定值的 50%; 厚度小于 6mm 的钢板不做冲击试验。

表 2 力学性能

	横向	拉伸试验b	丰而太氏研 庭	纵向	可冲击试验°
牌号	抗拉强度 å	断后伸长率 ^a	表面布氏硬度 10/3000,HBW	温度,℃	冲击吸收能量 ^a
	R_{m} , MPa	A_{50} , %	10/ 5000 7 115%	価反,し	KV_2 , J
NM360K	≥1050	>10	250 - 420	20	≥34
NM300K	≥1050	≥12	350~420	-20	≥21

NM400V	M400K ≥1150 ≥10 380~4	>10	200 - 440	20	≥34
NM400K		380~440	-20	≥21	
NM450K	≥1250	≥ 7	420~490	20	≥24
NM45UK				-20	≥19
NM500K	X ≥1350	≥6	470~550	20	≥24
AOOGMA				-20	≥17

[。]抗拉强度、延伸率、冲击功作为性能的特殊要求,如用户未在合同注明,则只保证表面布氏硬度。

6.5 表面质量

- 6.5.1 钢板表面不允许存在裂纹、气泡、结疤、折叠和夹杂等缺陷。钢板不得有分层(钢板断面出现局部的缝隙,使钢板断面形成局部层状)。如有上述表面缺陷,允许清理,清理深度从钢板实际尺寸算起,不得超过钢板厚度公差之半,并应保证钢板的最小厚度。缺陷清理处应平滑无棱角。
- 6.5.2 钢板表面允许有不妨碍检查表面缺陷的薄层氧化铁皮、铁锈、及由于压入氧化铁皮脱落所引起的表面粗糙、划伤、压痕及其它局部缺陷,但其深度不得大于厚度公差之半,并应保证钢板的最小厚度。
- 6.5.3 钢板不允许焊补。
- 6.5.4 除焊补的规定外,经供需双方协商,并在合同中注明,表面质量也可符合 GB/T 14977 的规定。

6.6 超声检测

经供需双方协商,可按 GB/T 2970 进行超声波检验钢板内部质量,合格级别在合同中注明。

6.7 特殊要求

经供需双方协商,并在合同中注明,可以对钢板提出其他特殊要求。

7 试验方法

每批钢板的检验项目、取样数量、取样方法及试验方法应符合表 3 的规定。

表 3 试验方法

检验项目	取样数量/个	取样数量/个 取样方法 取样 1/炉 GB/T 20066		试验方法
化学成分	1/炉			GB/T 223、GB/T 4336、GB/T 20123、GB/T 20125
拉伸	1/批 GB/T 2975		横向	GB/T 228.1
冲击	3/批	GB/T 2975	纵向	GB/T 229
硬度	1/批	GB/T 23		GB/T 231.1
超声检测	逐张	GB/T		GB/T 2970
尺寸、外形	逐张	-	-	符合精度要求的适宜量具

^b 60mm 及以上厚度钢板不作拉伸试验要求。

[©] 可根据用户特殊需求检测指定温度等级的冲击性能、截面心部硬度(不小于表面硬度最小值的 80%)等。

表面	逐张	-	_	目视	
注: 钢板表面铣掉(0.5mm~2.5mm,在	距钢板边部不小于	50mm处检测硬度,	硬度值为试样3个点的平均值。	厚度≤8mm钢
板布氏硬度检测采	用直径为2.5mm或5	mm小压头布氏硬度	5仪检测。		

8 检验规则

- 8.1 钢板的检查和验收由供方技术质量监督部门负责,需方有权按本标准或合同所规定的任一项目进行检查和验收。
- 8.2 钢板应成批验收,每批由同一牌号、同一炉号、同一厚度、同一交货状态的钢板组成,每批重量不大于 40t。
- 8.3 钢板的复验和判定应符合 GB/T 17505 的规定。
- 8.4 检验结果的数值修约应符合 GB/T 8170 的规定。

9 包装、标志及质量证明书

钢板的包装、标志及质量证明书应符合 GB/T 247 的规定。